- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
03
- Author / Contributor
- Filter by Author / Creator
-
-
Bo, Wei (3)
-
Cheng, Yanda (3)
-
Huang, Chuqin (3)
-
Li, Zhengxiong (3)
-
Xia, Jun (3)
-
Xu, Chenhan (3)
-
Xu, Wenyao (3)
-
Zhan, Ye (3)
-
Zhang, Xiaoyu (3)
-
Zhang, Emma (2)
-
Liu, Chuhui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Zhang, Xiaoyu; Liu, Chuhui; Cheng, Yanda; Li, Zhengxiong; Xu, Chenhan; Huang, Chuqin; Zhan, Ye; Bo, Wei; Xia, Jun; Xu, Wenyao (, Sensors)Millimeter-wave (mmWave) sensing has emerged as a promising technology for non-contact health monitoring, offering high spatial resolution, material sensitivity, and integration potential with wireless platforms. While prior work has focused on specific applications or signal processing methods, a unified understanding of how mmWave signals map to clinically relevant biomarkers remains lacking. This survey presents a full-stack review of mmWave-based medical sensing systems, encompassing signal acquisition, physical feature extraction, modeling strategies, and potential medical and healthcare uses. We introduce a taxonomy that decouples low-level mmWave signal features—such as motion, material property, and structure—from high-level biomedical biomarkers, including respiration pattern, heart rate, tissue hydration, and gait. We then classify and contrast the modeling approaches—ranging from physics-driven analytical models to machine learning techniques—that enable this mapping. Furthermore, we analyze representative studies across vital signs monitoring, cardiovascular assessment, wound evaluation, and neuro-motor disorders. By bridging wireless sensing and medical interpretation, this work offers a structured reference for designing next-generation mmWave health monitoring systems. We conclude by discussing open challenges, including model interpretability, clinical validation, and multimodal integration.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Zhang, Xiaoyu; Li, Zhengxiong; Cheng, Yanda; Xu, Chenhan; Huang, Chuqin; Zhang, Emma; Zhan, Ye; Bo, Wei; Xia, Jun; Xu, Wenyao (, ACM)Free, publicly-accessible full text available May 6, 2026
An official website of the United States government
